University of Kasdi Merbah, Ouargla
Faculty of Natural and Life Sciences
Academic Year 2023-2024
$1^{\text {st }}$ year Common core
Duration : 01h30
Date : 24/01/2024

Final exam: general and organic chemistry (Answers)
$\qquad$

## Exercise 1:

During the Chernobyl disaster, ${ }_{55}^{134} C s$ was released into the atmosphere. It disintegrates into ${ }_{56}^{134} B a$ with the emission of a charged particle.

1- Write the decay equation knowing that the decay of ${ }_{55}^{134} C s$ is accompanied by the emission of radiation.
${ }_{55}^{134} \mathrm{Cs} \rightarrow{ }_{56}^{134} \mathrm{Ba}+{ }_{-1}^{0} e \quad(2 \mathrm{pt})$
2- What type of decay is it?
$\beta^{-} \quad(1 \mathrm{pt})$
The half-life ( $\mathrm{t}^{1 / 2}$ ) of ${ }_{55}^{134} C s$ is 2 years.
1 - Deduce the decay constant ( $\lambda$ ).
$\lambda=\frac{\ln 2}{\mathrm{t}^{1 / 2}}=\frac{\ln 2}{2}=0,347$ year $^{-1}$
2- How long will it take for $99 \%$ of the released cesium nuclei to disappear?
The initial number of nuclei $\mathrm{N}_{0}=100 \%$, the number of decayed nuclei $=99 \% \Rightarrow \mathrm{~N}_{\mathrm{t}}=1 \%$
$\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \cdot \mathrm{e}^{-\lambda \mathrm{t}} \Rightarrow \mathrm{t}=-\frac{1}{\lambda} \ln \frac{N_{t}}{N_{0}} \quad \Rightarrow \quad \mathrm{t}=-\frac{1}{0.347} \ln \frac{1}{100}=13.27$ year $\quad(1 \mathrm{pt})$
Exercise 2: ( $1 \mathrm{pt} /$ question)
For each question, only one answer is correct. Circle the correct answer.
Consider the following chemical elements: Bromine ( ${ }_{35} \mathrm{Br}^{-}$), Molybdenum ( ${ }_{4} \mathrm{Mo}$ ), and Cesium ( ${ }_{55} \mathrm{Cs}^{+}$)

1) The valence level of Mo is:
a) $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{4}$
b) $5 \mathrm{~s}^{1} 4 d^{5}$
c) $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$
d) $5 \mathrm{~s}^{2} 4 \mathrm{~d}^{4}$
e) No correct answer
2) The valence level of $\mathrm{Br}^{-}$is:

| a) $4 s^{2} 3 d^{10} 4 p^{6}$ | b) $4 s^{1} 3 d^{10} 4 p^{6}$ |
| :--- | :--- |

c) $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{5}$
d) $4 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 3 \mathrm{p}^{6}$
e) No correct answer
3) The 04 quantum numbers of the unpaired electron of the element Br is:

| a) | $\mathrm{n}=4, \quad \mathrm{l}=2, \quad \mathrm{~m}=+2, \quad \mathrm{~s}=+1 / 2$ |  |
| :--- | :---: | :---: |
| b) | $\mathrm{n}=3, \quad \mathrm{l}=1, \quad \mathrm{~m}=+1, \quad \mathrm{~s}=-1 / 2$ |  |
| c) | $\mathrm{n}=4, \quad \mathrm{l}=1, \quad \mathrm{~m}=+1, \quad \mathrm{~s}=+1 / 2$ |  |
| d) | $\mathrm{n}=4, \quad \mathrm{l}=1, \quad \mathrm{~m}=0, \quad \mathrm{~s}=+1 / 2$ |  |
| e) | No correct answer |  |

4) The period and the group of $\mathrm{Cs}^{+}$is:
a) $6, \mathrm{VIII}_{\mathrm{A}}$
b) $5, \mathrm{II}_{\mathrm{A}}$
c) $6, V_{B}$
d) $6, I_{A}$
e) No correct answer
5) The classification of the atomic radius of $\mathrm{Mo}, \mathrm{Br}$, and Cs elements is:
a) $\mathrm{Mo}>\mathrm{Br}>\mathrm{Cs}$
b) $\mathrm{Cs}>\mathrm{Br}>\mathrm{Mo}$
c) $\mathrm{Br}>\mathrm{Cs}>\mathrm{Mo}$
d) $\mathrm{Cs}>\mathrm{Mo}>\mathrm{Br}$
e) No correct answer
6) Hybridization of the central atom of $\mathrm{H}_{3} \mathrm{O}^{+}$is:
a) sp
b) $\mathrm{sp}^{2}$
c) $\mathrm{sp}^{3}$
d) No correct answer
7) The VSEPR model of $\mathrm{H}_{3} \mathrm{O}^{+}$(for central atom) is:
a) $\mathrm{AX}_{4}$
b) $\mathrm{AX}_{3}$
c) $\mathrm{AX}_{2} \mathrm{E}_{2}$
d) $\mathrm{AX}_{3} \mathrm{E}_{1}$
e) No correct answer
8) What is the molecular shape of the following molecules:

| a) | $\mathrm{BeF}_{2}$ | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NCl}_{3}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| b) | Linear | pyramidal | Trigonal planar |  |
| c) | angular | pyramidal | Linear |  |
| d) | Linear | Trigonal planar | pyramidal |  |
| e) |  |  |  |  |
|  |  |  |  |  |

## Exercise 3:

1) Indicate the asymmetric carbons $\left(C^{*}\right)$ for $A$ and $B$ molecules.

2) Name the functional groups present in molecule $A$. (1.5 pt)

## $\mathrm{C}=\mathrm{O}$ : Ketone

$\mathrm{NH}_{2}$ : Amine
COOH : carboxylic acids
3) According to IUPAC system, give the systematic name of the compounds (A) and (B):

| (A) | 5-amino-6-methyl-4-oxo-2-propyl hept-2-enoic acid $(1 \mathrm{pt})$ |
| :--- | :--- |
| (B) | 7-ethyl non-7-en-2-ol $(1 \mathrm{pt})$ |

4) What is the absolute configuration $(R, S)$ of each asymmetric carbon of molecule $B$ with justification?

5) How many stereoisomers does have compound (B)?
$2^{\mathrm{n}}=2^{1}=2 \quad(0.5 \mathrm{pt})$
