1st year Common core Duration : 01h30 Date : 24/01/2024

Final exam: general and organic chemistry (Answers)

Last name: First name Group

Exercise 1:

During the Chernobyl disaster, ${}^{134}_{55}Cs$ was released into the atmosphere. It disintegrates into ${}^{134}_{56}Ba$ with the emission of a charged particle.

1- Write the decay equation knowing that the decay of ${}^{134}_{55}Cs$ is accompanied by the emission of radiation.

 $^{134}_{55}Cs \rightarrow ^{134}_{56}Ba + ^{0}_{-1}e$ (2 pt)

2- What type of decay is it?

$$\beta^-$$
 (1 pt)

The half-life $(t^{1/2})$ of ${}^{134}_{55}Cs$ is 2 years.

1- Deduce the decay constant (λ).

$$\lambda = \frac{\ln 2}{t\frac{1}{2}} = \frac{\ln 2}{2} = 0,347 \text{ year}^{-1}$$
 (1 pt)

2- How long will it take for 99% of the released cesium nuclei to disappear?

The initial number of nuclei N_0 =100%, the number of decayed nuclei = 99% \Rightarrow N_t = 1%

 $N_t = N_0 \cdot e^{-\lambda t} \implies t = -\frac{1}{\lambda} \ln \frac{N_t}{N_0} \implies t = -\frac{1}{0.347} \ln \frac{1}{100} = 13.27 \text{ year} (1 \text{ pt})$

Exercise 2:(1 pt/ question)

For each question, only **one answer** is correct. Circle the correct answer.

Consider the following chemical elements: Bromine (35Br⁻), Molybdenum (42Mo), and Cesium (55Cs⁺)

1) The valence level of Mo is:

a) $4s^2 3d^4$	b) $5s^1 4d^5$	c) $4s^2 3d^5$	d) $5s^2 4d^4$	e) No correct answer
------------------------	------------------------	------------------------	------------------------	----------------------

2) The valence level of Br $^-$ is:

3) The 04 quantum numbers of the unpaired electron of the element Br is:

a)	n = 4, $l = 2$, $m = +2$, $s = +1/2$
b)	n = 3, l = 1, m = +1, s = -1/2
c)	n = 4, $l = 1$, $m = +1$, $s = +1/2$
d)	n = 4, l = 1, m = 0, s = +1/2
e)	No correct answer

4) The period and the group of Cs^+ is:

a) 6, $VIII_A$	b) 5, II _A	c) 6, V _B	d) 6, I _A	e) No correct answer

5) The classification of the atomic radius of Mo, Br, and Cs elements is:

a)	Mo > Br > Cs	b) $Cs > Br > Mo$	c) $Br > Cs > Mo$	d) $Cs > Mo > Br$	e) No correct answer
----	--------------	---------------------------	-------------------	---------------------------	----------------------

6) Hybridization of the central atom of H_3O^+ is:

a) sp	b) sp ²	c) sp ³	d) No correct answer

7) The VSEPR model of H_3O^+ (for central atom) is:

a) AX_4 b) AX_3 c) AX_2E_2 d) AX_3E_1 e) No correct answer					
	\mathbf{a} AA_4	DI AA3	$C AA_2E_2$	$d) AX_{3}E_{1}$	

8) What is the molecular shape of the following molecules:

a)	BeF ₂	H ₂ O	NCl ₃
b)	Linear	pyramidal	Trigonal planar
c)	angular	pyramidal	Linear
d)	Linear	Trigonal planar	pyramidal
e)	e) No	correct answer	

¹H, 4Be, 7N, 8O, 9F, 17Cl

Exercise 3:

1) Indicate the asymmetric carbons (C*) for A and B molecules.

2) Name the functional groups present in molecule A. (1.5 pt)

C=O: Ketone

NH₂: Amine

COOH : carboxylic acids

3) According to IUPAC system, give the systematic name of the compounds (A) and (B):

(A)	5-amino-6-methyl-4-oxo-2-propyl hept-2-enoic acid (1 pt)
(B)	7-ethyl non-7-en-2-ol (1 pt)

4) What is the absolute configuration (R, S) of each asymmetric carbon of molecule B with justification?

5) How many stereoisomers does have compound (B)?

 $2^n = 2^1 = 2$ (0.5 pt)